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Graphical abstract

Abstract

Vehicular positioning with GPS/IMU has been studied a lot to increase positioning accuracy. The positioning algorithms mainly use DR (Dead
Reckoning) which uses EKF (Extended Kalman Filter). It is basic and very important core technology in positioning section. However, EKF has
a major drawback in that it is impossible to make very accurate system and measurement models for a real environment. In this work, we propose
an algorithm to estimate vehicle’s position as distribution form, and to control the system and measurement noise covariance to compensate for
this major disadvantage. The proposed method to control noise covariance is independently processed, using fading factor and sensor error while
considering the driving condition.
c⃝ 2016 The Korean Institute of Communications Information Sciences. Production and Hosting by Elsevier B.V. This is an open access article
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1. Introduction

Nowadays autonomous vehicle and C-ITS (Cooperative In-
telligent Transportation System) are to be in the limelight. They
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are very essential and active in developing. In order to real-
ize perfect autonomous vehicle and C-ITS, information of the
present vehicle’s position is very important because provide any
service of them [1]. The common way to generate information
of vehicle’s position is to use GPS [2]. There is already a large
amount of research and development regarding positioning with
GPS. However, it is difficult to calculate the position in real-
time because there are many obstacles with regard to accurate
and reliable positioning [3]. For example, it is impossible to
obtain accurate positioning in a tunnel or under an overpass,
as well as between skyscrapers. GPS also has low operating
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Fig. 1. Block diagram of the proposed algorithm for vehicular positioning.

frequency and sensor errors, so it is impossible to measure the
position accurately. That being said, technologies estimating
vehicle position under 1 m accuracy are necessary to realize
autonomous vehicle and C-ITS. That is why many methods are
developed to get around the limits of GPS vehicular positioning
such as DR (Dead Reckoning), radar, laser, vision sensor, map
matching, etc. Among them, DR with GPS and IMU [Inertial
Measurement Unit] is core method for the vehicular position-
ing. EKF (Extended Kalman Filter) is commonly used in DR
as an estimating method [4]. But it has a critical disadvantage
for being used as an estimation, in that the performance of EKF
is dependent on how accurate system and measurement models
are. If the theoretical behavior of the filter and its actual behav-
ior do not agree, divergence and low accurate output tend to
occur [5].

In this paper, the algorithm for solving the critical disadvan-
tage of DR with GPS and IMU is proposed. This algorithm is
a basic technique used for vehicular positioning. The algorithm
that assumes vehicular positioning via EKF is of a distribution
form and it adaptively controls the EKF noise covariance. The
system and measurement noise covariance are independently
controlled, and so more reliable and accurate positioning is pos-
sible. In Section 1, we explain entire vehicular positioning al-
gorithm. In Section 2, we introduce the algorithm for how to
control system and measurement noise covariance that are ap-
propriate for the positioning of the driving vehicle in urban en-
vironment. The test and result of the algorithm proposed are
discussed in Section 3 [6,7]. Finally, we conclude the paper in
Section 4.

2. Vehicular positioning algorithm

The proposed vehicular positioning algorithm uses GPS,
IMU and is made up of three parts as distribution structure
forms: longitudinal velocity, heading angle, position estimation
as seen in Fig. 1. The distribution algorithm makes it easier
to model, provides less load, and is more flexible with other
system compared to a single structure form. Each estimation
algorithm uses EKF in order to estimate longitudinal velocity,
heading, and position coordinates. GPS data is used in mea-
surement model of the filters, and IMU mainly is used as one
of data in system model. The discrete-time EKF for GPS, IMU
navigation is summarized as follow.

(1) Start with the initialized state vector and state covariance

matrix: x̂0,
ˆ̂P0.
(2) Calculate the Kalman gain matrix:

Kk = P−

k H T (H P−

k H T
+ R)−1.

(3) Calculate the update state vector:

x̂k = x̂−

k + Kk

zk − H x̂−

k


.

(4) Update the error covariance matrix:

Pk = P−

k − Kk H P−

k .

(5) Predict the new state vector, state covariance matrix:

x̂−

k = f

x̂k−1


, P−

k = (Fk−1 Pk−1 FT
k−1) · λ+ Q.

The system and measurement model for estimation of lon-
gitudinal velocity, heading angle, position are defined by Eqs.
(1)–(6). Eqs. (1), (2) are system, measurement model for longi-
tudinal velocity and Eqs. (3), (4) are for heading angle and Eqs.
(5), (6) are for estimating position. The final values X̂−

k , Ŷ −

k are
vehicle’s position that are estimated as longitude and latitude.
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where θ is pitch angle, GYROy and GYROz are y and z-axis
angular velocity, ACCx is x-axis acceleration, g is acceleration
of gravity, aLong and VLong are the longitudinal acceleration and
velocity, VGPS and ψGPS and XGPS and YGPS are velocity and
yaw and longitude and latitude from NMEA of GPS data, VZ
and VXY is velocity calculated by variation of altitude and lon-
gitude and latitude, respectively.

3. Adaptive control of filter noise covariance

It is very difficult to estimate the position of a running
vehicle using only the algorithm mentioned above when in a
downtown environment. This is because signals from the GPS
are very vulnerable to multi-path or GPS outage and system
models in the filter are not perfect in a real driving environment.
As a result, the original EKF depends on how accurate the
system models made in the filter are. However, it is impossible
to accurately model, so the process noise covariance Q and
measurement noise covariance R should be adjusted via tuning.
Tuning Q and R plays an important role in determining the
Kalman Gain, influencing the performance of the filter.
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3.1. The control of system noise covariance

The system noise covariance, Q should be adjusted by the
filter algorithm, as there is no way to control it directly. One
method to control Q in an adaptive way is to use fading factor.
The method using fading factor is on the calculation of the scale
factor. It is to apply a factor matrix to the predicted covariance
matrix to deliberately increase the variance of the predicted
state vector. The variance of predicted state vector in the step (4)
of the EKF process is mentioned in Section 2 and it is adjusted
as Eq. (7).

(PA)
−

k = λP−

k = λ(Ak−1 Pk−1 AT
k−1 + Qk) (7)

λ is a fading factor and is updated in each epoch by considering
EKF control parameters: Cvk (Covariance matrix of Innovation
Sequence), Ĉvk (Statistical Sample Estimate of Cvk ). The fading
factor is defined by Eq. (8).

λ = max(1, tr(Ĉvk )/tr(Cvk )) (8)

[tr(·) is the trace of matrix]

Cvk , Ĉvk are calculated by Eqs. (9), (10)

Cvk = Hk P−

k H T
k + Rk (9)

Ĉvk =
1

N − 1

k
j= j0

v jv
T
j (10)

where N is the window size chosen inductively, v j (Innovation
Sequence) and j0 are given by Eqs. (11) and (12).

vk = zk − z̄k = zk − H x̂−

k (11)

j0 = k − N + 1. (12)

When λ > 1, it means the filtering tends to be unstable.
Conversely, the filtering is in a steady state when λ ≤ 1. The
new variance of the predicted state vector (PA)

−

k adjusts system
noise covariance indirectly and increases tracking performance
for the vehicle positioning by λ.

3.2. The control of measurement noise covariance

The proper operation of the process noise covariance Q
scaling method depends on the proper measurement noise co-
variance R setting. R can be directly adjusted for real driv-
ing situation by using sensor. In the vehicular positioning
algorithm proposed, GPS is used as measurement value in es-
timation filter, EKF. Measurement noise which is GPS noise in
driving vehicle includes bias of sensor itself and degree of re-
liability of GPS signal in urban driving conditions. The urban
driving condition is divided into driving environments such as
Multi-path, GPS outage and driving state such as Stop, Forward
driving, Curve, etc. Therefore, measurement noise covariance
matrix in the proposed vehicular positioning filter is expressed
by Eq. (13).

R = diag[K · σ 2
1 (1 + ρ), K · σ 2

2 (1 + ρ), . . . , K · σ 2
n (1 + ρ)]

(13)
diag in Eq. (13) is diagonal matrix. This means each measure-
ment value used for estimating the position is independent of
others and has different noise term. σn is the bias of sensor it-
self, about nth measurement value, in estimating filter. ρ is the
degree of reliability of GPS signal in an urban driving environ-
ments, which are applied with same amount of noise in each
measurement value term. K is the gain that R matches Q up by
inductively scaling.

•The bias of sensor itself
The sensor mentioned in this paper is GPS receiver. In or-

der to measure the bias of sensor itself for measurement noise
covariance, GPS activates in stop state to output the measure-
ments that the output of the system is held constant. In this case,
only the bias of sensor itself remains because the original data
is subtracted. The equation for calculating the bias of sensor it-
self is σ 2

n , which is noise standard variance and is expressed by
Eq. (14).

σ 2
n =

k
i=1


(εn)i − µn

2

k
(14)

where k is number of sampling data, (εn)i is noise error of nth
measurement value in epoch i , µn is the mean of εn . The (εn)i
is defined by Eq. (15).

(εn)i = |(xn)i − (yn)i | . (15)

Here, (xn)i is GPS output of nth measurement value in epoch i
and (yn)i is the real value of nth measurement value in epoch
i . The forms of xn and yn are different and have their own
values, according to measurement: pitch, longitudinal accelera-
tion, longitudinal velocity, yaw, longitude, latitude.

•The degree of reliability of GPS signal
The degree of reliability of the GPS signal ρ plays a very im-

portant role in increasing performance of vehicular positioning,
because vehicles frequently drive under environments which
have a low reliability of GPS. The algorithm that calculates ρ
consists of two parts: a decision on driving environment ρE and
a decision on driving state ρS . Thus, the reliability of GPS sig-
nal ρ is given by Eq. (16).

ρ = ρE · ρS . (16)

The algorithm used for the decision of the driving environ-
ment provides a way to determine the reliability of the GPS
receiver in a driving vehicle with NMEA [The National Marine
Electronics Association] sub data. These data are Quality indi-
cator and number of visual satellites in GPGGA (Global Posi-
tioning System Fix Data), Fix and HDOP in GPGSA (Satellites
Status), distance between GPS 2EA. The algorithm quantifies
the quality of GPS data by using quality indicator, number of
visual satellites, fix, HDOP, distance. ×0.1 is for quantifying
GPS reliability in more detail. The parameters take values in
the range of 0, 1.1 ∼ 10.0 and indicate higher quality as the val-
ues approach 10.00. 0 tells GPS cannot be used for positioning.
The way these parameters are quantified is described in Fig. 2.

Among these factors, ‘Relative distance between GPS 2EA’
represents the reliability of the measurements of the GPS by
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Fig. 2. Block diagram of algorithm for decision on driving environment.
Fig. 3. The concept of measuring GPS reliability by relative distance.

using two GPSs. The two GPSs are positioned in a straight line
and installed on the car-top at constant intervals. When position
coordination is given by two GPSs, it is possible to calculate
the distance between two GPSs using position coordinate. The
positioned distance is calculated by longitudes and latitudes
of two GPSs. Thus, the distance is compared with constant
interval which is reference, then the difference between real
distance and the positioned distance is quantified to measure
GPS reliability as Fig. 3.

Using 5 factor, the algorithm is processed as Fig. 2. As a
result, value of the algorithm, 0 indicates that GPS data cannot
be used and 1.1 ∼ 10.0 indicate how reliable GPS data is.
Finally, these are transformed into ρE which ranges from 9.9
to 1 and 11 for measurement noise covariance as Eq. (17).

ρE (x) = 11 − x . (17)

The algorithm used for the decision on driving state is deter-
mined according to the driving modes of vehicle. The driving
mode can be categorized into 5 modes: Straight running, Curve
running, No moving, Quick start, Quick braking. The method
used to decide which mode the driving vehicles is in during a
real-time analysis is shown in Table 1.

Table 1 uses z as angular velocity GYRO, x as accelera-
tion ACCx , velocity from NMEA GPSvel in order to determine
modes of vehicle. Θ is threshold of angular velocity to decide
whether it turn or not; α is threshold of velocity from GPS,
which is very near zero; and β is the threshold of the accelera-
Table 1
Driving mode for decision on driving state.

Mode Condition

Straight running |GYROz | < Θ
Curve running |GYROz | ≥ Θ

No move GPSvel ∼= 0
Quick start

GPSvel
 < α, ACCx > β

Quick braking
GPSvel

 < α, ACCx < −β

tion, which is quite large. These mode are used in the estimation
algorithm for determining the vehicular heading angle and the
longitudinal velocity, because GPSs used in measurement mod-
els have relative performance in these states as compared with
IMU which is used in system models. That is why the algorithm
for the decision on driving state can determine when the weight
of GPS is increased rather than the weight of IMU in the esti-
mation filter. The rule for determining weight is below and uses
Fuzzy IF-THEN rules for the logic [8].

(a) IF Straight running in estimation of heading angle THEN
GPS is more reliable than IMU.

(b) IF Curve running in estimation of heading angle THEN
GPS is less reliable than IMU.

(c) IF No moving in estimation of longitudinal velocity THEN
GPS is more reliable than IMU.

(d) IF Quick start/Quick braking in estimation of longitudinal
velocity THEN GPS is less reliable than IMU.

According to the Fuzzy IF-THEN rules, a parameter ρS of
the decision on driving state has a value of 0.5 when GPS is
more reliable than IMU. On the other hand, the parameter ρS
has a value of 2 when GPS is less reliable and value 1 means
nothing involved.

4. Experimental results

To verify the performance of the proposed algorithm, the
algorithm has been tested on KIA K7 with GPS receivers [2EA]
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Fig. 4. The setup of environment in vehicle test.

Fig. 5. The comparison of longitudinal velocity estimated.

Fig. 6. The comparison of heading angle estimated.

and IMU [1EA]. The GPS receiver used in the experiments is
U-blox 7p model which has 2.5 CEP accuracy and 1 Hz update
rate. The IMU model is Mysen-M which has 4 g, 4 deg RMS
range and 100 Hz update rate. The setup and environment of
the test, which were conducted numerous times, are described
in Fig. 4.

The tests are conducted in urban area where there are many
buildings along the narrow path. The results of the tests are
shown by the estimated values: longitudinal velocity, heading
angle, coordinates and parameters for adaptive control of filter
noise. The comparison results of the estimated longitudinal
velocity between EKF and EKF with adaptive control filter
noise and RTK as reference which is more reliable than other
data, are shown in Fig. 5, and the estimated headings are in
Fig. 6. The adaptive control method is smoother and catch
the sudden splashed part of GPS for more reliable estimation.
The factors making the result as Figs. 5, 6 are depicted in
Fig. 7. The measurement noise covariance R is changed by the
driving conditions as Fig. 7(a) and system noise covariance Q
is differently fixed in both estimation parts. In order to control
Q in a roundabout way, Lamda λ in Fig. 7(b), which controls
Fig. 7. The change of Q & R (7(a)), Lamda λ (7(b)).

Fig. 8. The coordination estimated of vehicle in the low-multipath (8(a)) and
high-multipath environment (8(b)).

the predicted state (PA)
−

k for estimation of heading, fluctuates
more than one for estimation of longitudinal velocity.

The final result, coordination is shown as Fig. 8. Fig. 8(a) is
the coordination in low-multipath environment with the result
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of EKF, Adaptive control method, high-cost RTK which has
great performance as reference. Fig. 8(b) is in high-multipath
environment with EKF, RTK for verifying performance of the
proposed method. The result of the proposed method has good
tracking ability because of Adaptive DR, even though the result
of RTK quite bounce under lots of GPS signal blocked. In
low multipath environment where RTK is less influenced by
blocking signal, an average error and RMS 1σ error of EKF
compared with RTK as reference, are 2.069 m and 2.135 m 1σ .
On the other hand, an average error and RMS 1σ error of the
proposed method are just 1.59 m and 1.63 m 1σ , which are
lower than EKF.

5. Conclusion

In this paper, we proposed the method controlling EKF fil-
ter noise covariance which consisted of system and measure-
ment noise covariance. They are independently, automatically
adjusted by many factors. A system noise covariance Q indi-
rectly influences the performance of system model in EKF by
using Lamda λ. A measurement noise covariance R is adjusted
by the driving conditions: the driving environments, the driving
state. The result of positioning by using the proposed method
is more reliable and accurate than only using EKF. In spe-
cial situation, the performance of the proposed method is even
better than the expensive instrument using high-cost RTK. In
low-multipath area where RTK has quite good performance, the
performance of the proposed algorithm is around 0.4 m better
than one using only EKF.
Acknowledgments

This work was supported by the BK21 PLUS (Brain Korea
21 Program for Leading Universities & Students) funded by the
Ministry of Education, Korea.

This work was supported by MANDO (201500000000644)
corporation.

References

[1] K.C. Jo, k.Y. Chu, M.H. Sunwoo, Interacting multiple model filter-
based sensor fusion of GPS with in-vehicle sensors for real-time vehicle
positioning, IEEE Trans. Intell. Transp. Syst. 13 (1) (2012) 329–343.

[2] S.J. Chang, Y.Y. Chen, C.Y. Haung, The fusion navigation system
using the MEMS-based IMU and the global position system device, in:
Microsystmes, Packaging, Assembly & Circuits Technology Conference,
Taipei, Taiwan, October 2008, pp. 149–152.

[3] A. Amini, R.M. Vaghefi, J.M. Garza, R. Buehrer, Improving GPS-
based vehicle positioning for intelligent transportation systems, in: IEEE
Intelligent Vehicles Symposium, Dearborn, Michigan, USA, January. 2014,
pp. 1023–1029.

[4] W. Ding, J. Wang, C. Rizos, Improving adaptive kalman estimation in
GPS/INS integration, J. Navig. 60 (2007) 517–529.

[5] K.H. Kim, J.G. Lee, C.G. Park, Adaptive two-stage extended kalman filter
for a fault-tolerant INS-GPS loosely coupled system, IEEE Trans. Aerosp.
Electron. Syst. 45 (1) (2009) 125–137.

[6] C. Hu, W. Chen, Y. Chen, D. Liu, Adaptive filtering for vehicle navigation,
J. Global Position. Syst. 2 (1) (2003) 42–47.

[7] A. Almagbile, J. Wang, W. Ding, Evaluating the performances of adaptive
Kalman Filter methods in GPS/INS integration, J. Global Position. Syst. 9
(1) (2011) 33–40.

[8] V. Novák, S. Lehmke, Logical structure of fuzzy IF-THEN rules, Elsevier
Fuzzy Sets and Systems 157 (15) (2006) 2003–2029.


